Preparation of hydrazine functionalized polymer brushes hybrid magnetic nanoparticles for highly specific enrichment of glycopeptides.

نویسندگان

  • Guang Huang
  • Zhen Sun
  • Hongqiang Qin
  • Liang Zhao
  • Zhichao Xiong
  • Xiaojun Peng
  • Junjie Ou
  • Hanfa Zou
چکیده

Hydrazide chemistry is a powerful technique in glycopeptides enrichment. However, the low density of the monolayer hydrazine groups on the conventional hydrazine-functionalized magnetic nanoparticles limits the efficiency of glycopeptides enrichment. Herein, a novel magnetic nanoparticle grafted with poly(glycidyl methacrylate) (GMA) brushes was fabricated via reversible addition-fragmentation chain transfer (RAFT) polymerization, and a large amount of hydrazine groups were further introduced to the GMA brushes by ring-opening the epoxy groups with hydrazine hydrate. The resulting magnetic nanoparticles (denoted as Fe3O4@SiO2@GMA-NHNH2) demonstrated the high specificity of capturing glycopeptides from a tryptic digest of the sample comprising a standard non-glycosylated protein bovine serum albumin (BSA) and four standard glycoproteins with a weight ratio of 50 : 1, and the detection limit was as low as 130 fmol. In the analysis of a real complex biological sample, the tryptic digest of hepatocellular carcinoma, 179 glycosites were identified by the Fe3O4@SiO2@GMA-NHNH2 nanoparticles, surpassing that of 68 glycosites by Fe3O4@SiO2-single-NHNH2 (with monolayer hydrazine groups on the surface). It can be expected that the magnetic nanoparticles modified with hydrazine functionalized polymer brushes via RAFT technique will improve the specificity and the binding capacity of glycopeptides from complex samples, and show great potential in the analysis of protein glycosylation in biological samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of branched PEG brushes hybrid hydrophilic magnetic nanoparticles for the selective enrichment of N-linked glycopeptides.

Hybrid Fe(3)O(4)@SiO(2)@PEG-Maltose MNPs were synthesized by SI-ATRP of branched PEG brushes on the surface and subsequent functionalization with hydrophilic maltose group, and the multifunctional materials were utilized for selective enrichment of N-linked glycopeptides from biological samples with high specifity, high sensitivity, and large binding capacity.

متن کامل

Multivalent hydrazide-functionalized magnetic nanoparticles for glycopeptide enrichment and identification.

Among the common approaches for global glycopeptide enrichment, hydrazide chemistry is well recognized. However, conventional hydrazide-functionalized products are composed of a single layer of hydrazide functional groups. Due to the limited specific surface area of such a structure, the loading amount of hydrazide groups immobilized on these materials is restricted. Therefore, these materials ...

متن کامل

Fabrication of Alkoxyamine-Functionalized Magnetic Core-Shell Microspheres via Reflux Precipitation Polymerization for Glycopeptide Enrichment

As a facile method to prepare hydrophilic polymeric microspheres, reflux precipitation polymerization has been widely used for preparation of polymer nanogels. In this article, we synthesized a phthalamide-protected N-aminooxy methyl acrylamide (NAMAm-p) for preparation of alkoxyamine-functionalized polymer composite microspheres via reflux precipitation polymerization. The particle size and fu...

متن کامل

Facile synthesis of boronic acid-functionalized magnetic carbon nanotubes for highly specific enrichment of glycopeptides.

A stepwise strategy was developed to synthesize boronic acid functionalized magnetic carbon nanotubes (MCNTs) for highly specific enrichment of glycopeptides. The MCNTs were synthesized by a solvothermal reaction of Fe(3+) loaded on the acid-treated CNTs and modified with 1-pyrenebutanoic acid N-hydroxysuccinimidyl ester (PASE) to bind aminophenylboronic acid (APBA) via an amide reaction. The i...

متن کامل

Highly specific enrichment of N-linked glycopeptides based on hydrazide functionalized soluble nanopolymers.

In this work, for the first time, hydrazide functionalized PAMAM was designed and synthesized for efficient and selective enrichment of N-linked glycopeptides from complex biological samples using FASP (filter-aided sample preparation) mode.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 139 9  شماره 

صفحات  -

تاریخ انتشار 2014